Influence of nozzle geometry and injection conditions on the cavitation flow inside a diesel injector
Authors
Abstract:
Cavitation and turbulence in a diesel injector nozzle has a great effect on the development and primary breakup of spray. However, the mechanism of the cavitation flow inside the nozzle and its influence on spray characteristics have not been clearly known yet because of the internal nozzle flow complexities. In this paper, a comprehensive numerical simulation is carried out to study the internal flow of nozzle and the cavitation phenomenon. The internal cavitation flow of the nozzle is simulated using the Eulerian-Eulerian two-fluid model. In this approach, the diesel liquid and the diesel vapor are considered as two continuous phases, and the governing equations of each phase are solved separately. Simulation method is validated by comparing the numerical results with experimental data and good correspondence is achieved. The effective parameters on the nozzle flow are investigated, including injection pressure, back pressure, inlet curvature radius of orifice, orifice iconicity and its length. Results clearly show the importance of nozzle geometrical characteristics and dynamic parameters on the internal nozzle flow. Discharge coefficient of nozzle and cavitation distribution in the nozzle are extremely dependent on these parameters, so the effect of cavitation on the primary breakup is not negligible.
similar resources
Influence of Nozzle Orifice Geometry and Fuel Properties on Flow and Cavitation Characteristics of a Diesel Injector
Cavitation refers to the formation of bubbles in a liquid flow leading to a two-phase mixture of liquid and vapor/gas, when the local pressure drops below the vapor pressure of the fluid. Fundamentally, the liquid to vapor transition can occur by heating the fluid at a constant pressure, known as boiling, or by decreasing the pressure at a constant temperature, which is known as cavitation. Sin...
full textInvestigation the effects of injection pressure and compressibility and nozzle entry in diesel injector nozzle’s flow
Investigating nozzle’s orifice flow is challenging both experimentally and theoretically. This paper focuses on simulating flow inside diesel injector nozzle via Ansys fluent v15. Validation is performed with experimental results from Winkhofler et al (2001). Several important parameters such as mass flow rate, velocity profiles and pressure profiles are used for this validation. Results includ...
full textinvestigation the effects of injection pressure and compressibility and nozzle entry in diesel injector nozzle’s flow
investigating nozzle’s orifice flow is challenging both experimentally and theoretically. this paper focuses on simulating flow inside diesel injector nozzle via ansys fluent v15. validation is performed with experimental results from winkhofler et al (2001). several important parameters such as mass flow rate, velocity profiles and pressure profiles are used for this validation. results includ...
full textConversion of Diesel Engine to Port Injection CNG Engine Using Gaseous Injector Nozzle Multi Holes Geometries Improvement: A Review
This paper is the representation of the computational and experimental methods of a new injector nozzle for a sequential port injection CNG engine. The objective of this study was to review the previous research in the development of gaseous fuel injector for port injection CNG engine converted from diesel engine. Next, a simulation of the fuel flow of the new injector nozzle was made using FLU...
full textMy Resources
Journal title
volume 5 issue 1
pages 939- 954
publication date 2015-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023